Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 27,2024 No.5 Detail

Preparation of lactoferrin modified nanogel dropping pills and study on drug transport into brain

Published on May. 31, 2024Total Views: 262 times Total Downloads: 367 times Download Mobile

Author: DONG Qinwei 1, 2 LI Qiaoqiao 1, 2 CUI Yuanlu 1, 2 CHEN Yibing 1, 2

Affiliation: 1. State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2. Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China

Keywords: Nanogel Lactoferrin Dropping pills Box-Behnken response surface method Sublingual administration Neurodegenerative disease

DOI: 10.12173/j.issn.1008-049X.202311267

Reference: DONG Qinwei, LI Qiaoqiao, CUI Yuanlu, CHEN Yibing.Preparation of lactoferrin modified nanogel dropping pills and study on drug transport into brain[J].Zhongguo Yaoshi Zazhi,2024, 24(5):729-738.DOI: 10.12173/j.issn.1008-049X.202311267.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To improve the water solubility of natural drugs and the efficiency of their transport into the brain, to prepare nanogel dropping pills modified with lactoferrin for loading poorly soluble drugs and investigate the preparation process, and to provide a reference for drug development in the field of neurodegenerative diseases.

Methods    Using the insoluble drug icariin as the payload, the lactoferrin-modified zinc alginate nanogels were prepared by the reverse-phase microemulsion method. The drug loading and encapsulation rates of icariin in the nanogel were determined by HPLC. Taking the utilizing parameters such as roundness, weight difference and disintegration time as evaluation indicators, the best preparation process of dropping pills was optimized by single factor experiments and Box-Behnken response surface methodology. It was characterized by Fourier transform infrared spectroscopy, the release behavior of nanogel in dropping pills was explored by basket rotating method, and the brain entry efficiency between sublingual and oral administration of drip pills were compared by fluorescence tracing method.

Results  The drug loading rate of the nanogel was (2.67 ± 0.05)%, and the encapsulation rate was (84.74 ± 0.03)% by HPLC. The optimal preparation process for lactoferrin modified nanogel dropping pills was as follows: the ratio of matrix to nano gel was 5:1, the drop distance was 5.5 cm, and the condensation temperature was 8.5 ℃. Using the modified lactoferrin as a marker, its cumulative release rate in vitro reached 92.25%. Fluorescence tracing studies  showed that compared to the oral group, sublingual administration of dripping pills facilitated the faster and more effective passage of drugs through the blood-brain barrier, significantly enhanced the efficiency of drug transport into the brain.

Conclusion  The prepared lactoferrin-modified nanogels can be used as a loading platform for poorly soluble drugs and enhance the drug solubility. When further formulated into dripping pills, it significantly enhances the efficiency of drug transport into the brain after sublingual administration. This also enhances medication compliance among neurodegenerative patients and fulfills the clinical demand for the drug.

Full-text
Please download the PDF version to read the full text: download
References

1.Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease: a review[J]. JAMA, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.

2.Stephenson J, Nutma E, van der Valk P, et al. Inflammation in CNS neurodegenerative diseases[J]. Immunology, 2018, 154(2): 204-219. DOI: 10.1111/imm.12922.

3.Severino P, Da Silva CF, Andrade LN, et al. Alginate nanoparticles for drug delivery and targeting[J]. Curr Pharm Des, 2019, 25(11): 1312-1334. DOI: 10.2174/1381612825666190425163424.

4.Zhang CY, Yan L, Wang X, et al. Progress, challenges, and future of nanomedicine[J]. Nano Today, 2020, 35: 101008. DOI: 10.1016/j.nantod.2020.101008.

5.Segarra M, Aburto MR, Acker-Palmer A. Blood-brain barrier dynamics to maintain brain homeostasis[J]. Trends Neurosci, 2021, 44(5): 393-405. DOI: 10.1016/j.tins.2020.12.002.

6.Dong XW. Current strategies for brain drug delivery  [J]. Theranostics, 2018, 8(6): 1481-1493. DOI: 10.7150/thno.21254.

7.周建平, 孙曼霁.蛋白质转导结构域的跨血脑屏障药物递送[J]. 中国药理学通报, 2007, 23(11): 1401-1405. [Zhou JP, Sun MQ, Drug delivery to the brain using PTD transport systems[J]. Chinese Pharmacological Bulletin, 2007, 23(11): 1401-1405.] DOI: 10.3321/j.issn: 1001-1978.2007.11.001.

8.Sethi B, Kumar V, Mahato K, et al. Recent advances in drug delivery and targeting to the brain[J]. J Control Release, 2022, 350: 668-687. DOI: 10.1016/j.jconrel. 2022.08.051.

9.Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system[J]. Adv Drug Deliv Rev, 2012, 64(7): 614-628. DOI: 10.1016/j.addr.2011.11.002.

10.Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development[J].  Drug Deliv Transl Res, 2022, 12(4): 735-757. DOI: 10.1007/s13346-020-00891-5.

11.Ganger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa[J]. Pharmaceutics, 2018, 10(3): 116. DOI: 10.3390/pharmaceutics10030116.

12.Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nature Reviews Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.

13.Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology[J]. Int J Mol Sci, 2022, 23(8): 4153. DOI: 10.3390/ijms23084153.

14.Xiong S, Luo JS, Wang Q, et al. Targeted graphene oxide for drug delivery as a therapeutic nanoplatform against Parkinson's disease[J]. Biomater Sci, 2021, 9(5): 1705-1715. DOI: 10.1039/d0bm01765e.

15.Mittal S, Ashhar MU, Qizilbash FF, et al. Ligand conjugated targeted nanotherapeutics for treatment of neurological disorders[J]. Curr Pharm Des, 2020, 26(19): 2291-2305. DOI: 10.2174/1381612826666200417141600.

16.Goswami T, Jasti B, Li XL. Sublingual drug delivery[J].  Crit Rev Ther Drug Carrier Syst, 2008, 25(5): 449-484. DOI: 10.1615/CritRevTherDrugCarrierSyst.v25.i5.20.

17.汪盈盈, 柳继锋. 中药滴丸研究进展[J]. 产业与科技论坛, 2017, 16(12): 67-68. [Wang YY, Liu JF. Research progress of traditional Chinese medicine dropping pills[J]. Industrial & Science Tribune, 2017, 16(12): 67-68.] DOI: CNKI:SUN:CYYT.0.2017-12-036.

18.李倩. 复方丹参滴丸研究进展及临床应用[J]. 中华中医药杂志, 2018, 33(7): 2989-2991. [Li Q. Research progress and clinical application of compound danshen dripping pills[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(7): 2989-2991.] DOI: CNKI:SUN:BXYY.0.2018-07-078.

19.范雪兰, 徐超群, 曹阳, 等. 生态因子与柔毛淫羊藿药效成分含量及花、叶性状的相关性研究[J]. 中国中药杂志, 2024, 1-13. [Fan XL, Xu CQ, Cao Y, et al. Study on the correlation between ecological factors and the content of pharmacodynamic components, flower and leaf characters of Epimedium[J]. China Journal of Chinese Materia Medica, 2024, 1-13.] DOI: 10.19540/j.cnki.cjcmm.20240317.102.

20.马霄, 颜国华, 王世广, 等. 隐丹参酮滴丸制备及其体内药动学研究[J]. 中成药, 2023, 45(9): 2809-2815. [Ma X, Yan GH, Wang SG, et al. Preparation and in vivo pharmacokinetics of cryptotanshinone dropping pills[J]. Chinese Traditional Patent Medicine, 2023, 45(9): 2809-2815.] DOI: 10.3969/j.issn.1001-1528.2023.09.001.

21.刘万路. 柚皮素磷脂酰胆碱复合物滴丸处方优化及口服药动学评价[J]. 中草药, 2023, 54(19): 6253-6263. [Liu WL. Formulation optimization of naringenin-phosphatidylcholine complex dropping pills and oral pharmacokinetics evaluation[J]. Chinese Traditional and Herbal Drugs, 2023, 54(19): 6253-6263.] DOI: 10.7501/j.issn.0253-2670.2023.19.007.

22.中国药典2020年版. 四部 [S]. 2020: 45-46.

23.Rey M, Fernandez-Rodriguez MA, Karg M, et al. Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces[J]. Acc Chem Res, 2020, 53(2): 414-424. DOI: 10.1021/acs.accounts.9b00528.

24.Li HM, Tong YN, Bai L, et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma[J]. Int J Biol Macromol, 2018, 107(Pt A): 204-211. DOI: 10.1016/j.ijbiomac.2017.08.155.

25.Xiong S, Li ZJ, Liu Y, et al. Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease[J]. Biomaterials, 2020, 260: 120339.  DOI: 10.1016/j.biomaterials.2020.120339.

26.安子璇, 张奇, 史彩云, 等. 乳铁蛋白修饰党参多糖脂质体的制备及体外评价[J]. 中国现代应用药学, 2023, 40(10): 1317-1329. [An ZX, Zhang Q, Shi CY, et al. Preparation and in vitro evaluation of lactoferrin-modified liposomes of Codonopsis pilosula polysaccharide[J]. Chinese Journal of Modern Applied Pharmacy, 2023, 40(10): 1317-1329.] DOI: 10.13748/j.cnki.issn1007-7693.20221362.

27.Janjua TI, Ahmed-Cox A, Meka AK, et al. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma[J]. Nanoscale, 2021, 13(40): 16909-16922. DOI: 10.1039/d1nr03553c.

28.Qiao RR, Jia QJ, Huwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier[J]. Acs Nano, 2012, 6(4): 3304-3310. DOI: 10.1021/nn300240p.

29.Huang RQ, Ke WL, Qu YH, et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain[J]. J Biomed Sci, 2007, 14(1): 121-128. DOI: 10.1007/s11373-006-9121-7.

Popular papers
Last 6 months